Abstract:Extreme heat events and heat waves pose an increasingly significant threat to human communities,affecting public health,agriculture,economic stability and fueling secondary disasters such as wildfires.In recent years,heat waves have become more frequent,intense,and prolonged,particularly in the densely populated Northern Hemisphere (NH).However,the primary spatial modes of heat waves across the NH,along with their associated oceanic and atmospheric conditions remain insufficiently understood.This study investigates the natural variability of NH heat waves during boreal summer over the past century.We identify three leading modes in the frequency of daily maximum temperatures exceeding 35 ℃,collectively accounting for 52.6% of the explained variance.The first mode presents a uniform pattern of heat wave frequency anomalies across most of the NH.This interdecadal mode corelates with the Atlantic Multi-decadal Oscillation (AMO),which triggers atmospheric anticyclone anomalies in the upper troposphere,decreasing cloud cover and increasing surface diabatic heating.AMO-induced Rossby wave energy propagates from low to mid-latitudes,then eastward across Eurasia and North America,establishing wave-train anomalies linked to this primary mode via teleconnections.The second mode,showing a latitudinal tripole pattern across Eurasia and a meridional dipole over North America,reflects interannual atmospheric variability tied to the North Atlantic Oscillation (NAO).The NAO influences critical North American regions through high-pressure ridges and propagating wave trains.The third mode captures an Eurasian meridional tripole and North American latitudinal dipole pattern,shaped by the Pacific Decadal Oscillation (PDO),El Niño-Southern Oscillation (ENSO),and sea surface temperature anomalies of the South Indian Ocean (SIO).Both PDO and ENSO affect NH heatwave frequency anomalies through upper-to-lower level geopotential height variations over Eurasia on interdecadal and interannual timescales,respectively.ENSO's influence extends to NH heat wave patterns via the Pacific-North America (PNA) teleconnection and the Indian Ocean capacitor effect.The SIO modulates vertical atmospheric motion over regions such as East Asia and eastern North America via Walker and Hadley circulations,further affecting NH heat wave frequency anomalies.We develop a multiple linear regression model to reconstruct NH heat wave frequencies based on the air-sea background factors of these three leading modes,including their spatial distributions and variance contributions.The model aligns well with observed heat wave frequencies and extreme high temperature events,reinforcing the significant impact of multi-scale oceanic and atmospheric signal on NH heat wave anomalies.When the absolute temperature thresholds are increased to 37 ℃ and 40 ℃,the leading modes display similar spatial patterns,suggesting that the identified oceanic and atmospheric drivers remain influential.Analysis based on relative temperature thresholds show consistent results,although variability at high latitudes exhibits a distinct contribution.Additional natural variability components,potentially linked to sea ice,snow cover,and soil moisture,warrant further investigation.