Abstract:Hunan Province,located in southern China,experiences frequent and intense precipitation,especially during the rainy season.Recent years,have seen an increase in extreme precipitation events,characterized by significant diurnal variation,which complicates forecasting efforts.Over the past decade,China has developed a regional network of high-resolution,fully-automated weather stations,enhancing the study the study short-duration heavy rainfall.This study utilizes hourly precipitation data from 1 599 automatic weather stations across Hunan Province,collected from 2012 to 2021,to analyze the characteristics of hourly extreme precipitation during the rainy season (April—September).The study also examines the relationship between hourly extreme precipitation events and 12-hour rainstorms,focusing on their statistical characteristics and the contribution of hourly extreme events to overall rainstorm totals.This quantitative analysis aims to reveal the intrinsic connections between these events and provide a technical foundation for improving nowcasting and early warning systems.The 99.9% percentile was selected as the threshold for defining extreme hourly precipitation in Hunan.Results show that the spatial distributions of frequency and intensity of extreme precipitation events are similar,with high-frequency areas concentrated in the Xuefeng Mountains,the southern Nanling Mountains,and the Dongting Lake area,with maximum values in southern Hunan.Complex terrain and underlying surfaces significantly enhance hourly precipitation intensity.The annual frequency of extreme hourly events in the rainy season exhibits wavelike growth,peaking in 2021 and reaching a low in 2013,where 2021 recorded nearly 90% more events than in 2013.Extreme precipitation events are most common from May to August,peaking in June.Diurnally,extreme precipitation follows a bimodal pattern,peaking at 18:00 and 07:00 BST,with a rapid increase in the afternoon,a peak in the evening,a gradual decline overnight,and a secondary peak in the early morning.The spatial distribution of 12-hour rainstorm is similar to that of hourly extreme events,with an average annual frequency of 2 490 occurrences at night and 2 039 during the day,indicating a higher nighttime frequency.High-frequency areas for 12-hour rainstorms are found primarily in western Hunan,along the Xuefeng and Wuling Mountain ranges,with isolated high-frequency locations in the eastern and southern regions,while lower frequencies are observed between 25.5°N and 26.5°N.Monthly and daily variations in 12-hour rainstorm frequency show distinct regional patterns,with high-frequency zones varying from May to September and the Dongting Lake region experiencing the highest frequency in June and July.Daytime hourly extreme precipitation contributes significantly more to 12-hour rainstorms than nighttime events:in the daytime,41% of stations report that hourly extreme events contribute 70%—90% of 12-hour rainstorm totals,while this contribution rate is only 25% at night.High-contribution regions are primarily concentrated in southern Hunan.