Abstract:Carbon dioxide (CO2) is a primary greenhouse gas,and its rising atmospheric concentration is a critical driver of climate change,contributing to extreme weather,rising sea levels,and ecosystem alterations.Remote sensing via carbon satellites provides a powerful approach for large-scale,precise CO2 monitoring;however,challenges with spatial and temporal sparsity limit the accuracy and continuity of CO2 concentration (XCO2) estimates,particularly across large regions like China's Yangtze River delta.To address these limitations,this study introduces the Space-Time Soft Attention Network (ST-SAN),a novel model designed to enhance the spatiotemporal resolution of XCO2 estimates derived from carbon satellite data.The model leverages multi-source datasets (including human activity,meteorological,and vegetation) alongside carbon satellite observations,achieving a seamless XCO2 dataset with a 0.05° spatial resolution,thus providing a detailed view of regional CO2 dynamics.Training the ST-SAN model on data from 2016 to 2020,the methodology employs soft attention mechanisms to prioritize relevant features across spatial and temporal dimensions,enabling more accurate XCO2 predictions.The model's effectiveness was rigorously evaluated by comparing reconstructed XCO2 data with observations from the Orbiting Carbon Observatory-2 and ground-based monitoring stations,demonstrating high consistency and reliability.By integrating diverse datasets,the ST-SAN model effectively addresses the sparsity issues in satellite observations,enhancing predictive performance and offering a comprehensive framework for high-resolution CO2 estimation.These findings underscore the potential of advanced machine learning techniques to improve atmospheric monitoring and provide critical insights for climate mitigation efforts.Future research could refine this model with additional data sources,extend its applicability to varied regions,and explore long-term CO2 trends to better understand the influences of human activity and natural processes on greenhouse gas emissions.The study not only demonstrates the feasibility of high-resolution XCO2 estimation but also establishes a foundation for more accurate climate assessments and informed environmental policy.