东亚地区冬季地面气温延伸期概率预报研究
作者:
基金项目:

国家自然科学基金资助项目(41575104);北极阁开放研究基金南京大气科学联合研究中心(NJCAR)重点项目;江苏高校优势学科建设工程资助项目(PAPD)


Extended-range probabilistic forecasts of surface air temperature over East Asia during boreal winter
Author:
  • JI Luying

    JI Luying

    Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China
    在知网中查找
    在百度中查找
    在本站中查找
  • ZHI Xiefei

    ZHI Xiefei

    Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China;Nanjing Joint Center for Atmospheric Research(NJCAR), Nanjing 210008, China
    在知网中查找
    在百度中查找
    在本站中查找
  • ZHU Shoupeng

    ZHU Shoupeng

    Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China
    在知网中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
  • |
    摘要:

    利用TIGGE资料中的ECMWF、NCEP、UKMO三个中心集合预报系统以及由此构成的多中心集合预报系统所提供的地面2 m气温10~15 d延伸期集合预报产品,建立贝叶斯模式平均(Bayesian Model Averaging,BMA)概率预报模型,对东亚地区冬季地面气温进行延伸期概率预报研究。采用距平相关系数、均方根误差、布莱尔评分、等级概率评分等指标分别对BMA确定性结果与概率预报进行评估。结果表明,BMA方法明显地改进了原始集合预报结果,预报技巧优于原始集合预报,且多中心BMA预报优于单中心BMA预报,最佳滑动训练期取35 d。BMA预报为气温的延伸期概率预报提供了更合理的概率分布,定量描述了预报的不确定性。

    Abstract:

    Based on the TIGGE datasets including the European Centre for Medium-Range Weather Forecasts(ECMWF), the U.S.National Centers for Environmental Prediction(NCEP), the United Kingdom Met Office(UKMO) and its multi-center ensemble systems, Bayesian Model Averaging(BMA) probabilistic forecasts of winter surface air temperature over East Asia are established.Anomaly correlation coefficient(ACC) and root mean square(RMSE) are used for the evaluation of the BMA deterministic forecasts.Furthermore, Brier score(BS), Ranked probability score(RPS), BSS and RPSS are applied to evaluate the performance of BMA probabilistic forecasts.The results show that the BMA forecast distributions are considerably better calibrated than the raw ensemble forecasts, and BMA forecasts of ECMWF, NCEP and UKMO EPSs provide better deterministic forecasts than the individual model forecasts.The BMA models for multi-center EPSs outperform those for single-center EPS for lead times of 240-360 h, and the optimal length of the training period is about 35 days.In addition, BMA provides a more reasonable probability distribution, which depicts the quantitative uncertainty of the forecasts.The uncertainty on the land(higher latitude) is larger than that on the sea(lower latitude).

    参考文献
    卞赟, 智协飞, 李佰平, 2015.多模式集成方法对延伸期降水预报的改进[J].中国科技论文, 10(15):1813-1817. Bian Y, Zhi X F, Li B P, 2015.Multimodal ensemble method improvement for extended range consensus forecast of precipitation[J].China Sci Paper, 10(15):1813-1817.(in Chinese).
    Brier G W, 1950.Verification of forecasts expressed in terms of probability[J].Mon Wea Rev, 78(1):1-3.
    崔慧慧, 智协飞, 2013.基于TIGGE资料的地面气温延伸期多模式集成预报[J].大气科学学报, 36(2):165-173. Cui H H, Zhi X F, 2013.Multi-model ensemble forecasts of surface air temperature in the extended range using the TIGGE dataset[J].Trans Atmos Sci, 36(2):165-173.(in Chinese).
    杜钧, 陈静, 2010.单一值预报向概率预报转变的基础:谈谈集合预报及其带来的变革[J].气象, 36(11):1-11. Du J, Chen J, 2010.The corner stone in facilitating the transition from deterministic to pProbabilistic forecasts-ensemble forecasting and its impact on numerical weather prediction[J].Meteor Mon, 36(11):1-11.(in Chinese).
    杜钧, 邓国, 2010.单一值预报向概率预报转变的价值:谈谈概率预报的检验和应用[J].气象, 36(12):10-18. Du J, Deng G, 2010.The utility of the transition from deterministic to probabilistic weather forecasts-verification and application of probabilistic forecasts[J].Meteor Mon, 36(12):10-18.(in Chinese).
    Epstein E S, 1969.Stochastic dynamic prediction[J].Tellus, 21(6):739-759.
    Galin M B, 2007.Study of the low-frequency variability of the atmospheric general circulation with the use of time-dependent empirical orthogonal functions[J].Izv Atmos and Oceanic Physics, 43(1):15-23.
    Goswami B N, Xavier P K, 2003.Potential predictability and extended range prediction of India summer monsoon breaks[J].Geophys Res Lett, 30(18):10-29.
    陆如华, 裘国庆, 1995.天气概率预报的科学性及其应用前景[J].气象, 21(11):3-6. Lu R H, Qiu G Q, 1995.The scientific characters of the weather probability prediction and its applied prospect[J].Meteor Mon, 21(11):3-6.(in Chinese).
    马浩, 毛燕军, 雷媛, 等, 2012.10-30 d延伸期天气预报研究进展综述[J].干旱气象, 30(4):514-521. Ma H, Mao Y J, Lei Y, et al., 2012.Advances in the study on 10-30 days extended-range weather forecast[J].Arid Meteor, 30(4):514-521.(in Chinese).
    Min S K, Simonis D, Hense A, 2007.Probabilistic climate change pre-predictions applying Bayesian model averaging[J].Philosophical Trans of the Royal Society A Mathematical, Physical and Engineering Sciences, 365(1857):2103-2116.
    Miyakoda K, Gordon T, Carerly R, et al., 1983.Simulation of a blocking event in January 1977[J].Mon Wea Rev, 111(4):846-869.
    Raftery A E, Gneiting T, Balabdaoui F, et al., 2005.Using bayesian model averaging to calibrate forecast ensembles[J].Mon Wea Rev, 133(5):1155-1174.
    Sanders F, 1963.On subjective probability forecasting[J].J Appl Meteor Climatol, 2(2):191-201.
    Sloughter J M, Raftery A E, Gneiting T, et al., 2007.Probabilistic quantitative precipitation forecasting using Bayesian model averaging[J].Mon Wea Rev, 135(9):3209-3220.
    Sloughter J M, Gneiting T, Raftery A E, 2010.Probabilistic wind speed forecasting using ensembles and Bayesian model averaging[J].J Amer Stat Assoc, 105(489):25-35.
    Sloughter J M, Gneiting T, Raftery A E, 2013.Probabilistic wind vector forecasting using ensembles and Bayesian model averaging[J].Mon Wea Rev, 139(6):107-2119.
    孙国武, 李震坤, 信飞, 等, 2013.延伸期天气过程预报的一种新方法—低频天气图[J].大气科学, 37(4):945-954. Sun G W, Li Z K, Xin F, et al., 2013.Low-frequency synoptic map:new method for extended range forecasting[J].Chin J Atmos Sci, 37(4):945-954.(in Chinese).
    Talagrand O, Vautard R, Strauss B, 1997.Evaluation of probabilistic prediction systems[C]//Proc.ECMWF workshop on predictability.
    Wang J, Zhi X F, Chen Y W, 2013.Probabilistic multimodel ensemble prediction of decadal variability of East Asian surface air temperature based on IPCC-AR5 near-term climate simulations[J].Adv Atmo Sci, 30(4):1129-1142.
    Wilson L J, Beauregrad S, Raftery A E, et al., 2007.Calibrated surface air temperature forecasts from the Canadian ensemble prediction system using Bayesian model averaging[J].Mon Wea Rev, 135(4):1364-1385.
    赵琳娜, 刘琳, 刘莹, 等, 2015.观测降水概率不确定性对集合预报概率Brier技巧评分结果的分析[J].气象, 41(6):685-694. Zhao L N, Liu L, Liu Y, et al., 2015.Impact of observation uncertainty of precipitation on the brier skill score of global ensemble prediction system[J].Meteor Mon, 41(6):685-694.(in Chinese).
    智协飞, 陈雯, 2010.THORPEX国际科学研究新进展[J].大气科学学报, 33(4):504-511. Zhi X F, Chen W, 2010.New achievements of international atmospheric research in THORPEX program[J].Trans Atmos Sci, 33(4):504-511.(in Chinese).
    智协飞, 林春泽, 白永清, 等, 2009.北半球中纬度地区地面气温的超级集合预报[J].气象科学, 29(5):569-574. Zhi X F, Lin C Z, Bai Y Q, et al., 2009.Superensemble forecasts of the surface temperature in Northern Hemisphere middle latitudes[J].Scientia Meteor Sinica, 29(5):569-574.(in Chinese).
    智协飞, 彭婷, 李刚, 等, 2014a.多模式集成的概率天气预报和气候预测研究进展[J].大气科学学报, 37(2):248-256. Zhi X F, Peng T, Li G, et al., 2014a.Advances in multimodel ensemble probabilistic prediction[J].Trans Atmos Sci, 37(2):248-256.(in Chinese).
    智协飞, 李刚, 彭婷, 2014b.基于贝叶斯理论的单站地面气温的概率预报研究[J].大气科学学报, 37(6):740-748. Zhi X F, Li G, Peng T, 2014b.On the probabilistic forecast of 2 meter temperature of a single station based on Bayesian theory[J].Trans Atmos Sci, 37(6):740-748.(in Chinese).
    智协飞, 王晶, 林春泽, 等, 2015.CMIP5多模式资料中气温的BMA预测方法研究[J].气象科学, 35(4):405-412. Zhi X F, Wang J, Lin C Z, et al., 2015.Bayesian model average prediction on temperature by CMIP5 data[J].Scientia Meteor Sinica, 35(4):405-412.(in Chinese).
    引证文献
引用本文

吉璐莹,智协飞,朱寿鹏,2017.东亚地区冬季地面气温延伸期概率预报研究[J].大气科学学报,40(3):346-355. JI Luying, ZHI Xiefei, ZHU Shoupeng,2017. Extended-range probabilistic forecasts of surface air temperature over East Asia during boreal winter[J]. Trans Atmos Sci,40(3):346-355. DOI:10.13878/j. cnki. dqkxxb.20161106001

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-11-06
  • 最后修改日期:2017-03-13
  • 在线发布日期: 2017-06-07

地址:江苏南京宁六路219号南京信息工程大学    邮编:210044

联系电话:025-58731158    E-mail:xbbjb@nuist.edu.cn    QQ交流群号:344646895

大气科学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司