Abstract:In the present study, a heavy precipitation process of the Yangtze Valley River Basin during the period of 30 June to 4 July 2016 is simulated by using a Weather Forecast modeling system. The effects of the microphysics schemes are dividedinto two groups of nine single-moment and seven double-moment schemes. Next, using the time series of observational precipitation to simulate single-moment and double-moment schemes, FY-2G and Cloudsat cloud product were also used to evaluate the simulation different microphysics schemes of the cloud macroscale and microscale characteristics, such as total cloud fraction and vertical struction of the cloud fraction and cloud water content in the precipitation process. The results revealedthe following:the simulation of different microphysics schemes can present the rain belt position and central rainfall intensity of the process, yet the simulation of the cloud macroscale and microscale characteristics are significantly different. With the exception of the Kessler scheme by the warm cloud scheme of single-moment scheme, in which, due to the insufficient description of the ice cloud process causing the simulation of total cloud fraction to be significantly higher, all of the other single-moment and double-parameter schemes can simulate the temporal and spatial evolution characteristics of the total cloud cover during the heavy precipitation process. From the vertical distribution characteristics of cloud coverage and cloud water content, the simulation stability of the group of single-moment schemes to the middle and low level warm clouds below 600 hPa are slightly better than the group of the double-moment schemes. In addition, the simulation results of the ice cloud between 200-500 hPa were reversed, and the group of double-moment schemes was more concentrated than the single-moment group. The comparison of the simulation cloud fraction of each layer with the Cloudsat cloud product showed that for the low level warm cloud precipitation process using the WSM3 scheme of single-moment scheme the cloud fraction is closer to the observation than the double-moment schemes. However, the deep convection process which took the cold cloud precipitation process as the main movement characteristics, when using the WDM5 or WDM6 scheme of double-moment schemes, the high cloud fraction is more stable and the error is smaller.