基于神经网络算法的Sentinel-1和Sentinel-2遥感数据联合反演土壤湿度研究
作者:
基金项目:

中国航天科技集团公司第八研究院产学研合作基金资助项目;国家自然科学基金国际(地区)合作与交流项目(61661136005);国家重点研发计划项目(2017YFC1501704;2016YFA0600703)


Joint retrieval of soil moisture from Sentinel-1 and Sentinel-2 remote sensing data based on neural network algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
  • |
    摘要:

    以西班牙萨拉曼卡地区为研究区域,联合Sentinel-1后向散射系数和入射角信息、Sentinel-2光学数据提取的植被指数以及地面实测数据,构建了BP神经网络土壤湿度反演模型,并将该模型应用于试验区土壤湿度反演。结果表明:1)基于Sentinel-1卫星VV和VH极化雷达后向散射系数、雷达入射角和Sentinel-2植被指数数据构建的BP神经网络土壤湿度反演模型,能够实现对该地区土壤湿度高精度反演;2)在光学与微波数据联合反演植被覆盖区土壤湿度中,Sentinel-2的NDVI、NDWI1和NDWI2指数都可以用于削弱植被对土壤湿度反演的影响,但基于SWRI1波段的NDWI1能够获得更高精度的土壤湿度反演结果(RMSE为0.049 cm3/cm3,ubRMSE为0.048 cm3/cm3,Bias为0.008 cm3/cm3r为0.681);3)相比于Sentinel-1 VH极化模式,Sentinel-1 VV极化模式在土壤湿度中表现出更大优势,说明Sentinel-1 VV极化模式更适用于土壤湿度反演。

    Abstract:

    Soil moisture is an important parameter of ecological environment and an important part of water cycle.The retrieval of surface soil moisture based on multi-source remote sensing data is a hotspot and trend in recent years.As a new generation of Sentinel satellites, the Sentinel-1 SAR data combined with the Sentinel-2 optical data have broad application prospects.Taking Salamanca, Spain as the research area, a BP neural network soil moisture retrieval model is constructed by combining the Sentinel-1 backscatter coefficient and incidence angle information, the vegetation index extracted from the Sentinel-2 optical data, and the ground observation data, and the model is applied to retrieve the soil moisture in the area.Finally, the model retrieval results are tested and evaluated.Results show that:(1) Based on the Sentinel-1 satellite VV and VH polarization radar backscatter coefficients and radar incidence angles and the Sentinel-2 vegetation index data, the BP neural network soil moisture retrieval model can realize high-precision retrieval of soil moisture in Salamanca area;(2) In the joint retrieval of soil moisture of optical and microwave data in vegetation coveragearea, the NDVI, NDWI1 and NDWI2 indices from the Sentinel-2 can be used to weaken the influence of vegetation on soil moisture retrieval, but the NDWI1 based on SWRI1 band can obtain more accurate soil moisture retrieval results (RMSE=0.049 cm3/cm3, ubRMSE=0.048 cm3/cm3, Bias=0.008 cm3/cm3, r=0.681);(3) Comparing with the Sentinel-1 VH polarization model, the Sentinel-1 VV polarization model shows greater advantages in soil moisture, indicating that the Sentinel-1 VV polarization model is more suitable for soil moisture retrieval.

    参考文献
    相似文献
    引证文献
引用本文

吴善玉,鲍艳松,李叶飞,吴莹,2021.基于神经网络算法的Sentinel-1和Sentinel-2遥感数据联合反演土壤湿度研究[J].大气科学学报,44(4):636-644. WU Shanyu, BAO Yansong, LI Yefei, WU Ying,2021. Joint retrieval of soil moisture from Sentinel-1 and Sentinel-2 remote sensing data based on neural network algorithm[J]. Trans Atmos Sci,44(4):636-644. DOI:10.13878/j. cnki. dqkxxb.20190419001

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-04-19
  • 最后修改日期:2019-05-09
  • 在线发布日期: 2021-08-24

地址:江苏南京宁六路219号南京信息工程大学    邮编:210044

联系电话:025-58731158    E-mail:xbbjb@nuist.edu.cn    QQ交流群号:344646895

大气科学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司