Addison H, Kendon E, Ravuri S, et al., 2024. Machine learning emulation of precipitation from km-scale regional climate simulations using a diffusion model[EB/OL]. arXiv: 2407. 14158. DOI: 10. 48550/arXiv. 2407. 14158.
Asperti A, Merizzi F, Paparella A, et al., 2023. Precipitation nowcasting with generative diffusion models[EB/OL]. arXiv: 2308. 06733. DOI: 10. 48550/arXiv. 2308. 06733.
Bauer P, Thorpe A, Brunet G, 2015. The quiet revolution of numerical weather prediction[J]. Nature, 525(7567): 47-55. DOI: 10. 1038/nature14956.
Benjamin S G, Weygandt S S, Brown J M, et al., 2015. A North American hourly assimilation and model forecast cycle: the rapid refresh[J]. Mon Wea Rev, 144(4): 1669-1694. DOI: 10. 1175/mwr-d-15-0242. 1.
Bi K F, Xie L X, Zhang H H, et al., 2023. Accurate medium-range global weather forecasting with 3D neural networks[J]. Nature, 619(7970): 533-538. DOI: 10. 1038/s41586-023-06185-3.
Bonavita M, 2024. On some limitations of current machine learning weather prediction models[J]. Geophys Res Lett, 51(12): e2023GL107377. DOI: 10. 1029/2023GL107377.
Brock A, Donahue J, Simonyan K, 2018. Large scale GAN training for high fidelity natural image synthesis[EB/OL]. arXiv: 1809. 11096. DOI: arxiv. org/abs/1809. 11096v2.
陈元昭, 林良勋, 王蕊, 等, 2019. 基于生成对抗网络GAN的人工智能临近预报方法研究[J]. 大气科学学报, 42(2): 311-320. Chen Y Z, Lin L X, Wang R, et al., 2019. A study on the artificial intelligence nowcasting based on generative adversarial networks[J]. Trans Atmos Sci, 42(2): 311-320. DOI: 10. 13878/j. cnki. dqkxxb. 20190117001. (in Chinese).
Cliff A D, Ord J K, 1984. Spatial processes: models & applications[J]. Quarterly Review of Biology, 147(3): 515. DOI: 10. 2307/5981590.
Deng J, Dong W, Socher R, et al., 2009. ImageNet: a large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA. DOI: 10. 1109/CVPR. 2009. 5206848.
Dhariwal P, Nichol A, 2021. Diffusion models beat GANS on image synthesis[EB/OL]. arXiv: 2105. 05233. DOI: 10. 48550/arXiv. 2105. 05233.
Dijkstra H A, Nonlinear, 2013. Climate dynamics[M]. Cambridge, UK: Cambridge University Press. DOI: 10. 1017/cbo9781139034135.
Dosovitskiy A, Beyer L, Kolesnikov A, et al., 2021. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. arXiv: 2010. 11929. DOI: 10. 48550/arXiv. 2010. 11929.
Gao Z, Shi X, Han B, et al., 2024. Prediff: precipitation nowcasting with latent diffusion models[EB/OL]. arXiv: 2307. 10422v2. DOI: 10. 48550/arXiv. 2307. 10422.
Garcia S V, Hoogeboom E, Fuchs F, et al., 2021. E(n) equivariant normalizing flows[EB/OL]. arXiv: 2105. 09016. DOI: 10. 48550/arXiv. 2105. 09016.
Gong J C, Bai L, Ye P, et al., 2024. CasCast: skillful high-resolution precipitation nowcasting via cascaded modelling[EB/OL]. arXiv: 2402. 04290. DOI: 10. 48550/arXiv. 2402. 04290.
Goodfellow I J, Pouget-Abadie J, Mirza M, et al., 2014. Generative adversarial networks[EB/OL]. arXiv: 1406. 2661. DOI: 10. 48550/arXiv. 1406. 2661.
Guen V L, Thome N, 2020. Disentangling physical dynamics from unknown factors for unsupervised video prediction[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle, WA, USA: 11471-11481. DOI: 10. 1109/CVPR42600. 2020. 01149.
Hersbach H, 2000. Decomposition of the continuous ranked probability score for ensemble prediction systems[J]. Wea Forecasting, 15(5): 559-570. DOI: 10. 1175/1520-0434(2000)015<0559: dotcrp>2. 0. co;2.
Hersbach H, Bell B, Berrisford P, et al., 2020. The ERA5 global reanalysis[J]. Quart J Roy Meteor Soc, 146(730): 1999-2049. DOI: 10. 1002/qj. 3803.
Heusel M, Ramsauer H, Unterthiner T, et al., 2017. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[EB/OL]. arXiv: 1706. 08500. DOI: 10. 48550/arXiv. 1706. 08500.
Ho J, Jain A, Abbeel P, 2020. Denoising diffusion probabilistic models[EB/OL]. arXiv: 2006. 11239. DOI: 10. 48550/arXiv. 2006. 11239.
Hoogeboom E, Satorras V G, Vignac C, et al., 2022. Equivariant diffusion for molecule generation in 3D[C]//International conference on machine learning: 8867-8887. DOI: 10. 48550/arXiv. 2203. 17003.
Hourdin F, Mauritsen T, Gettelman A, et al., 2017. The art and science of climate model tuning[J]. Bull Amer Meteor Soc, 98(3): 589-602. DOI: 10. 1175/bams-d-15-00135. 1.
Huang L W, Gianinazzi L, Yu Y J, et al., 2024. DiffDA: a diffusion model for weather-scale data assimilation[EB/OL]. arXiv: 2401. 05932. DOI: 10. 48550/arXiv. 2401. 05932.
黄小猛, 林岩銮, 熊巍, 等, 2024. 数值预报AI气象大模型国际发展动态研究[J]. 大气科学学报, 47(1): 46-54. Huang X M, Lin Y L, Xiong W, et al., 2024. Research on international developments of AI large meteorological models in numerical forecasting[J]. Trans Atmos Sci, 47(1): 46-54. DOI: 10. 13878/j. cnki. dqkxxb. 20231201001. (in Chinese).
IPCC, 2021. Climate change 2021: the physical science basis[R]. Cambridge, United Kingdom and New York: Cambridge University Press.
Jain A, Mildenhall B, Barron J T, et al., 2022. Zero-shot text-guided object generation with dream fields[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA: 857-866. DOI: 10. 1109/CVPR52688. 2022. 00094.
Jaynes E T, 1957. Information theory and statistical mechanics[J]. Phys Rev, 106(4): 620-630. DOI: 10. 1103/PhysRev. 106. 620.
Kalnay E, 2003. Atmospheric modeling, data assimilation and predictability[M]. Cambridge, UK: Cambridge University Press. DOI: 10. 1017/cbo9780511802270.
Kane R P, Teixeira N R, 1990. Power spectrum analysis of the time-series of annual mean surface air temperatures[J]. Clim Change, 17(1): 121-130. DOI: 10. 1007/BF00149003.
Kingma D P, Welling M, 2014. Auto-encoding variational Bayes arXiv: 1312. 6114V11. DOI: 10. 48550/arXiv. 1312. 6114.
Kingma D P, Salimans T, Poole B, et al., 2021. Variational diffusion models[J]. Advances in Neural Information Processing Systems, 34: 21696-21707.
Kolmogorov A N, 1991. The local structure of turbulence in incompressible viscous fluid for very l arge Reynolds numbers[J]. Proc R Soc Lond A, 434(1890): 9-13. DOI: 10. 1098/rspa. 1991. 0075.
Kong Z F, Ping W, Huang J J, et al., 2020. DiffWave: a versatile diffusion model for audio synthesis[EB/OL]. arXiv: 2009. 09761. DOI: arxiv. org/abs/2009. 09761v3.
匡秋明, 沈晨凯, 于廷照, 等, 2022. 多尺度残差金字塔网络模型三维气象要素降尺度研究[J]. 大气科学学报, 45(5): 660-673. Kuang Q M, Shen C K, Yu T Z, et al., 2022. Weather statistical downscaling using a 3D multi-scale residual Laplacian pyramid network[J]. Trans Atmos Sci, 45(5): 660-673. DOI: 10. 13878/j. cnki. dqkxxb. 20220424002. (in Chinese).
Lam R, Sanchez-Gonzalez A, Willson M, et al., 2023. Learning skillful medium-range global weather forecasting[J]. Science, 382(6677): 1416-1421. DOI: 10. 1126/science. adi2336.
Leinonen J, Hamann U, Nerini D, et al., 2023. Latent diffusion models for generative precipitation nowcasting with accurate uncertainty quantification[EB/OL]. arXiv: 2304. 12891. DOI: 10. 48550/arXiv. 2304. 12891.
Leutbecher M, Palmer T N, 2008. Ensemble forecasting[J]. J Comput Phys, 227(7): 3515-3539. DOI: 10. 1016/j. jcp. 2007. 02. 014.
Li L Z, Carver R, Lopez-Gomez I, et al., 2024. Generative emulation of weather forecast ensembles with diffusion models[J]. Sci Adv, 10(13): eadk4489. DOI: 10. 1126/sciadv. adk4489.
Lin T Y, Maire M, Belongie S, et al., 2014. Microsoft COCO: common objects in context[M]//Computer Vision—ECCV 2014. Cham: Springer International Publishing: 740-755. DOI: 10. 1007/978-3-319-10602-1_48.
Lopez-Gomez I, Wan Z Y, Zepeda-Núñez L, et al., 2024. Dynamical-generative downscaling of climate model ensembles[EB/OL]. arXiv: 2410. 01776. DOI: 10. 48550/arXiv. 2410. 01776.
Lorenz E N, 1963. Deterministic nonperiodic flow[J]. J Atmos Sci, 20(2): 130-141. DOI: 10. 1175/1520-0469(1963)020<0130: dnf>2. 0. co;2.
Lugmayr A, Danelljan M, Romero A, et al., 2022. RePaint: inpainting using denoising diffusion probabilistic models[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA: 11451-11461. DOI: 10. 1109/CVPR52688. 2022. 01117.
马丽, 武永利, 董春卿, 等, 2024. 太行山复杂地形下华北暖季极端降水的时空分布特征[J]. 大气科学学报, 47(3): 438-449. Ma L, Wu Y L, Dong C Q, et al., 2024. Spatial-temporal distribution characteristics of extreme precipitation in the warm season in North China under the complex topography of the Taihang Mountains[J]. Trans Atmos Sci, 47(3): 438-449. DOI: 10. 13878/j. cnki. dqkxxb. 20230614001. (in Chinese).
Majda A J, Klein R, 2003. Systematic multiscale models for the tropics[J]. J Atmos Sci, 60(2): 393-408. DOI: 10. 1175/1520-0469(2003)060<0393: smmftt>2. 0. co;2.
Manshausen P, Cohen Y, Harrington P, et al., 2024. Generative data assimilation of sparse weather station observations at kilometer scales[EB/OL]. arXiv: 2406. 16947. DOI: 10. 48550/arXiv. 2406. 16947v3.
Mardani M, Brenowitz N, Cohen Y, et al., 2025. Residual corrective diffusion modeling for km-scale atmospheric downscaling[J]. Commun Earth Environ, 6: 124. DOI: 10. 1038/s43247-025-02042-5.
Martin Arjovsky, Soumith Chintala, Léon Bottou, 2017. Wasserstein generative adversarial networks[C]//Proceedings of the 34th International Conference on Machine Learning-Volume70. Sydney, Australia.
Nichol A, Dhariwal P, Ramesh A, et al., 2021. GLIDE: towards photorealistic image generation and editing with text-guided diffusion models[EB/OL]. arXiv: 2112. 10741. DOI: 10. 48550/arXiv. 2112. 10741v3.
Palmer T N, 2000. Predicting uncertainty in forecasts of weather and climate[J]. Rep Prog Phys, 63(2): 71-116. DOI: 10. 1088/0034-4885/63/2/201.
Pathak J, Cohen Y, Garg P, et al., 2024. Kilometer-scale convection allowing model emulation using generative diffusion modeling[EB/OL]. arXiv: 2408. 10958. DOI: 10. 48550/arXiv. 2408. 10958v1.
Peters O, Neelin J D, 2006. Critical phenomena in atmospheric precipitation[J]. Nat Phys, 2: 393-396. DOI: 10. 1038/nphys314.
Pisarenko V F, Rodkin M V, 2010. Heavy-tailed distributions in disaster analysis[M]. Dordrecht: Springer. DOI: 10. 1007/978-90-481-9171-0.
Poole B, Jain A, Barron J T, et al., 2022. DreamFusion: text-to-3D using 2D diffusion[EB/OL]. arXiv: 2209. 14988. DOI: 10. 48550/arXiv. 2209. 14988.
Price I, Sanchez-Gonzalez A, Alet F, et al., 2025. Probabilistic weather forecasting with machine learning[J]. Nature, 637(8044): 84-90. DOI: 10. 1038/s41586-024-08252-9.
Pulkkinen S, Nerini D, A Pérez Hortal, et al., 2019. Pysteps-a community-driven open-source library for precipitation nowcasting[J]. DOI: 10. 13140/RG. 2. 2. 31368. 67840.
Putman W M, Lin S, 2009. A finite-volume dynamical core on the cubed-sphere grid[C]//ASP Conference. Yokohama, Japan.
Qu Y Q, Nathaniel J, Li S L, et al., 2024. Deep generative data assimilation in multimodal setting[EB/OL]. arXiv: 2404. 06665. DOI: 10. 48550/arXiv. 2404. 06665.
Radford A, Kim J W, Hallacy C, et al., 2021. Learning transferable visual models from natural language supervision[EB/OL]. arXiv: 2103. 00020. DOI: 10. 48550/arXiv. 2103. 00020 Ramesh A, Pavlov M, Goh G, et al., 2021. Zero-shot text-to-image generation[EB/OL]. arXiv: 2102. 12092. DOI: 10. 48550/arXiv. 2102. 12092.
Ramesh A, Dhariwal P, Nichol A, et al., 2022. Hierarchical text-conditional image generation with CLIP latents[EB/OL]. arXiv: 2204. 06125. DOI: 10. 48550/arXiv. 2204. 06125.
Ravuri S, Lenc K, Willson M, et al., 2021. Skilful precipitation nowcasting using deep generative models of radar[J]. Nature, 597(7878): 672-677. DOI: 10. 1038/s41586-021-03854-z. Roe G, 2009. Feedbacks, timescales, and seeing red[J]. Annu Rev Earth Planet Sci, 37: 93-115. DOI: 10. 1146/annurev. earth. 061008. 134734.
Rombach R, Blattmann A, Lorenz D, et al., 2022. High-resolution image synthesis with latent diffusion models[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA: 10674-10685. DOI: 10. 1109/CVPR52688. 2022. 01042.
Ronneberger O, Fischer P, Brox T, 2015. U-Net: convolutional networks for biomedical image segmentation[EB/OL]. arXiv: 1505. 04597. DOI: 10. 48550/arXiv. 1505. 04597.
Rozet F, Louppe G, 2023. Score-based data assimilation[EB/OL]. arXiv: 2306. 10574. DOI: 10. 48550/arXiv. 2306. 10574.
Rubner Y, Tomasi C, Guibas L J, 2000. The earth mover's distance as a metric for image retrieval[J]. Int J Comput Vis, 40(2): 99-121. DOI: 10. 1023/A: 1026543900054.
Saharia C, Ho J, Chan W, et al., 2023. Image super-resolution via iterative refinement[J]. IEEE Trans Pattern Anal Mach Intell, 45(4): 4713-4726. DOI: 10. 1109/TPAMI. 2022. 3204461.
Shi X J, Chen Z R, Wang H, et al., 2015. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[J]. Adv Neural Inf Process Syst. DOI: 10. 1007/978-3-319-21233-3_6.
Sohl-Dickstein J N, Weiss E A, Maheswaranathan N, et al., 2020. Deep unsupervised learning using nonequilibrium thermodynamics. arXiv: 1503. 03585. DOI: 10. 48550/arXiv. 1503. 03585.
Song Y, Ermon S, Block A, et al., 2019. Generative modeling by estimating gradients of the data distribution[EB/OL]. arXiv: 1907. 05600. DOI: 10. 48550/arXiv. 1907. 05600.
Song Y, Sohl-Dickstein J, Kingma D P, et al., 2020. Score-based generative modeling through stochastic differential equations[EB/OL]. arXiv: 2011. 13456 DOI: 10. 48550/arXiv. 2011. 13456.
Srivastava P, Yang R H, Kerrigan G, et al., 2023. Precipitation downscaling with spatiotemporal video diffusion[EB/OL]. arXiv: 2312. 06071. DOI: 10. 48550/arXiv. 2312. 06071.
Strogatz S, Friedman M, Mallinckrodt A J, et al., 1994. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering[J]. Comput Phys, 8(5): 532. DOI: 10. 1063/1. 4823332.
Unterthiner T, van Steenkiste S, Kurach K, et al., 2018. Towards accurate generative models of video: a new metric & challenges[EB/OL]. arXiv: 1812. 01717. DOI: 10. 48550/arXiv. 1812. 01717.
Veillette M, Samsi S, Mattioli C, 2020. Sevir: a storm event imagery dataset for deep learning applications in radar and satellite meteorology[J]. Advances in Neural Information Processing Systems, 2020, 33: 22009-22019.
Wang Y, Long M, Wang J, et al., 2017. Predrnn: recurrent neural networks for predictive learning using spatiotemporal LSTMs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. DOI: 10. 5555/3294771. 3294855. Watt R A, Mansfield L A, 2024. Generative diffusion-based downscaling for climate[EB/OL]. arXiv: 2404. 17752. DOI: 10. 48550/arXiv. 2404. 17752.
杨淑贤, 零丰华, 应武杉, 等, 2022. 人工智能技术气候预测应用简介[J]. 大气科学学报, 45(5): 641-659. Yang S X, Ling F H, Ying W S, et al., 2022. A brief overview of the application of artificial intelligence to climate prediction[J]. Trans Atmos Sci, 45(5): 641-659. DOI: 10. 13878/j. cnki. dqkxxb. 20210623003. (in Chinese).
Yu D M, Li X T, Ye Y M, et al., 2024. DiffCast: a unified framework via residual diffusion for precipitation nowcasting[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: 27758-27767. DOI: 10. 1109/CVPR52733. 2024. 02622.
Zhang Y C, Long M S, Chen K Y, et al., 2023. Skilful nowcasting of extreme precipitation with NowcastNet[J]. Nature, 619(7970): 526-532. DOI: 10. 1038/s41586-023-06184-4.
Zhou X Q, Zhu Y J, Hou D C, et al., 2017. Performance of the new NCEP global ensemble forecast system in a parallel experiment[J]. Wea Forecasting, 32(5): 1989-2004.: DOI: 10. 1175/waf-d-17-0023. 1.