陈凯 , 胡国谦 , KEUTGEN Norbert , KEUTGEN Anna , JANSSENS Marc , LENZ Fritz
2012, 35(2): 129-139.
摘要:对单株砂培盆栽的半木质化枝条扦插生根的一月龄人生果(Solanum muricatum Ait.)栽培品种"Xotus",每周浇两次200mL NaCl质量浓度分别为0mg·L-1和25mg·L-1的Hoagland营养液处理2个月,第二个月在控制空气CO2体积分数为(350±10)×10-6、(700±10)×10-6和(1050±10)×10-6的植物生长箱内试验。结果表明,人参果植株干物质生产量和耗水量受根际NaCl盐渍而下降,又随大气CO2升高而增加。根际NaCl盐渍能增大植株叶片蒸腾系数、根/冠比和干物质向枝干和根部分配的比例及积累量,降低根系吸收水分的效率和耗水量。升高大气CO2能促进叶片发育及干物质向地上部其他器官和地下部组织分配,增加总叶面积、比叶干重和各种器官中干物质增长量,提高干物质生产率和水分利用率。根际经25mg·L-1NaCl盐渍处理的植株,总干物质增长量和水分利用率相应下降50%~54%和24%~37%;与350×10-6CO2的处理的植株相比,700×10-6及1050×10-6CO2的处理分别使这两项指标提高到79%~106%和61%~88%以及133%~189%和99%~142%。大气CO2富集能改善受NaCl盐渍的植株干物质生产力、提高水分利用率。根际NaCl盐渍和大气CO2富集对人参果植株干物质生产和水分利用有生物互作效应。它们的共同作用会促进植株干物质的增长及叶片中合成的干物质向其他器官分配,提高干物质生产率和水分利用率,同时减少总叶面积、枝条和根系干重、根系吸水效率、植株耗水量和叶片蒸腾系数。因此,全球大气CO2富集将有利于该作物的干物质生产和水分利用。
2012, 35(2): 140-147.
摘要:以南京市ETM+影像为数据源,经嵌套于ERDAS IMAGINE9.1中的ATCOR2大气校正后,提取了南京城区地表温度(land surface temperature,LST)、归一化植被指数(normalized difference vegetation index,NDVI)和减化比值植被指数(reduced simple ratio,RSR),基于实测值和同时相AS-TER数据反演结果的双重验证,拟合了两种植被指数与地表温度的定量关系,并进行对比分析。结果表明,除水体外,植被覆盖度高的区域地表温度明显低于植被稀少或无植被区;地表温度与NDVI呈显著线性负相关,与RSR呈显著幂函数负相关,后者的相关性高于前者;当RSR小于3.2时,地表温度随植被覆盖增加而锐减,当RSR大于3.2时,植被覆盖继续增加,地表温度却趋于恒定,呈现植被降温效应"饱和"现象;对比比值植被指数(ratio vegetation index,RVI)应用结果发现,近红外和红光比值的线性拉伸是导致NDVI和RSR表征城市热环境效应存在差异的主因,还与短波红外对水分敏感和能真实反映植被冠层结构有关。中国6大城市热环境案例研究均表明,RSR能直接解释对于不同下垫面,增加相同的植被覆盖度其降温效果存在差异的现象,而不进行土地利用分类,NDVI则无法揭示此现象。
2012, 35(2): 148-162.
摘要:利用NCEP(National Centers for Environmental Prediction)提供的1°×1°的FNL(final)资料和中尺度WRF(Weather Research and Forecasting)模式,研究了热带气旋(tropical cyclone,简记TC)动力季节预报的可能性,通过在27km的粗网格中运用张弛逼近(Nudging)技术,对2006年7-9月西北太平洋TC活动进行了92d的连续数值积分。与观测结果比较表明,WRF模式不仅较好地模拟了MJO(Madden-Julian oscillation)和准双周振荡的活动情况,而且模拟的TC频数、移动路径和强度都与实际观测结果比较接近。在嵌套的9km网格中,不仅模拟出眼墙、暖心等TC结构的主要特征和TC的西行盛行路径及登陆活动情况,而且所模拟的生成过程包括早期研究中提出的TC生成过程中的两次快速发展的过程。模拟的TC初始涡旋主要出现在季风槽中,伴随准双周振荡活动,它的第一次发展在初始涡旋中心形成强烈的对流区;经过一段时间的减弱后,在有利的大尺度形势下,涡旋中心湿水汽层迅速增厚,导致气旋的第二次强烈发展。
2012, 35(2): 163-174.
摘要:利用合成技术对1995—2006年冬季(11月—次年2月)生成在西北太平洋上的34个热带气旋(tropicalcyclone,TC)个例进行分析,研究冬季西北太平洋TC生成的大尺度环流特征及其生成机制,结果表明:冬季TC生成的大尺度环流特征型为东风波西传型;北半球冬季对流层低层出现的跨赤道气旋对是冬季北半球TC形成的重要特征;太平洋中部赤道混合Rossby重力波西北传,与强对流中心重合,性质转为"热带低压型扰动",为冬季热带气旋生成提供扰动源。对合成TC初始场的涡动扰动动能的收支分析表明,涡动有效位能和正压不稳定转换为TC形成提供了能量,这两种能量分别与积云对流加热和水平不均匀气流有关。正压不稳定能量转换为动能主要位于对流层中下层,而扰动有效位能的转换主要位于对流层中上层。低层热带东风波动从平均气流中获得正压不稳定能量,并与强积云对流耦合,热力和动力共同作用下形成TC。
2012, 35(2): 175-185.
摘要:以2001和2006年盛夏登陆中国南方并造成巨大灾害的两次热带气旋过程为例,利用"CMA-STI热带气旋最佳路径数据集"、NCEP/NCAR再分析资料及地面加密观测资料,对2001年0103号"榴莲"和2006年0604号"碧利斯"热带气旋陆上维持和暴雨增幅的大尺度环境场及成因进行了对比分析。结果表明:1)"榴莲"登陆后与中纬度西风槽发生相互作用,构成了典型的"北槽南涡"天气形势,"碧利斯"登陆后受西太平洋副高、北方大陆高压坝和南侧副高向西南方向延伸的高压脊所包围,有利于其环流维持。2)"榴莲"和"碧利斯"陆上维持期间越赤道气流明显增强,但是在"榴莲"活动期间,100°E附近越赤道气流表现突出,而在"碧利斯"陆上活动期间,80°E附近越赤道气流尤为显著,它们都增强了当时的西南季风,把大量来自热带海洋的水汽注入登陆后减弱的"榴莲"和"碧利斯"环流,使其非但没有很快减弱消亡,反而能在登陆后长时间维持不消。3)2001和2006年东亚夏季风存在明显低频振荡,2001年低纬夏季风10~20d低频振荡显著,而2006年则以30~60d低频振荡为主,由不同低频振荡周期表示的低纬季风涌均存在明显的北传特征。当低频振荡处于极端活跃位相时,季风涌最为强盛并侵入"榴莲"和"碧利斯"环流系统,正好对应着当时的台风暴雨剧烈增幅。此外,低频气流的辐合和低频水汽输送也是"榴莲"和"碧利斯"暴雨增幅的重要原因。
刘莹莹 , 牛生杰 , 封秋娟 , 刘端阳 , 陆春松 , 刘霖蔚
2012, 35(2): 186-196.
摘要:利用2009年5月8日多普勒雷达资料和飞机穿云观测资料,综合分析了西风槽影响下山西省一次积层混合云的形成过程和微物理结构。结果表明,此次飞机探测到的积层混合云是由对流单体多次并合形成的带状对流云团减弱后形成的,云中嵌有明显的对流泡,最大强度为45~50dBZ,最大垂直尺度在6km左右。CDP(cloud droplet probe,前向散射粒子谱探头)、CIP(cloud ima-ging probe,二维灰度云粒子探头)、PIP(precipitation imaging probe,二维灰度降水粒子探头)测量的平均数浓度变化范围分别是132.4~220.2cm-3、1.54×10-1~6.28×100cm-3、9.09×10-4~7.34×10-3cm-3。二维图像表明,冷层中的固态粒子主要是形状不规则的霰粒子,说明过冷水供应充足;在-7℃左右观测到柱状聚合体和凇附程度不同的冰雪晶粒子,表明柱状冰晶通过凝华形成后,碰并和凇附是其增长为霰粒子的重要机制。不同高度的CDP平均谱(2~50μm)存在一定的差异,因低层水汽凝结作用较强,2~18μm的云粒子数浓度基本随高度的增加而降低;因暖层中碰并效率低和冷层中小冰晶浓度随高度增加,24~35μm粒子数浓度随高度增加而增大。CIP平均谱(25~1550μm),除4100m为双峰谱外,其他高度均为单峰谱。PIP平均谱(100~6200μm),4450m高度处的粒子谱宽和数浓度最大,3200~4000μm之间出现大值区域,表明对流单体及周边区域为较大固态降水粒子的形成提供了良好的环境。
2012, 35(2): 197-204.
摘要:为了监测北京奥运主场馆附近大气颗粒物的污染状况以及评估奥运污染源减排措施对北京大气颗粒物质量浓度变化的影响,利用颗粒物在线监测仪器TEOM于2007年和2008年夏季,在奥运主场馆附近的中国科学院遥感应用研究所办公楼楼顶对大气颗粒物PM10和PM2.5进行了连续同步观测。结果表明,2007年夏季监测点附近大气PM10与PM2.5质量浓度的平均值分别为153.9和71.2μg·m-3,而2008年夏季PM10与PM2.5质量浓度的平均值分别为85.2和52.8μg·m-3。与奥运前一年同时段相比,奥运时段大气PM10和PM2.5的质量浓度分别下降44.5%和25.1%。对比分析奥运前后的2次典型污染过程发现,空气相对湿度的增加和偏南气流输送的共同影响易造成大气颗粒物的累积增长,而降雨的湿清除作用和偏北气流则会使大气颗粒物浓度迅速降低。在相近的气象条件下,奥运前后的污染过程中,大气细粒子的日均增长速率分别为25.1和13.9μg·m-3·d-1,而大气粗粒子的日均增长速率分别为20.8和2.2μg·m-3·d-1,奥运时段污染累积过程中大气粗、细粒子的增长速率分别显著低于和略低于奥运前同时段污染过程中颗粒物的增长速率。污染源减排措施的实施是奥运期间大气颗粒物质量浓度降低的主要原因,从控制效果来看,奥运期间实施的污染源减排措施对大气粗粒子的控制效果明显好于大气细粒子。
2012, 35(2): 205-213.
摘要:选取甘肃平凉地区2005年和2007年3次典型的雷暴过程,根据X波段多普勒双偏振雷达提供的偏振参量ZH、ZDR、KDR、ρHV和高度H,利用分层决策法对雷暴云内的水凝物粒子进行识别。在此基础上,分析甘肃平凉地区夏季雷暴云微物理和电过程之间的关系,尤其是地面电场、闪电类型与水凝物粒子分布之间的关系,推测了雷暴云内不同类型的水凝物粒子携带的电荷极性,并对该地区的电荷结构特征做了进一步解释。
2012, 35(2): 214-220.
摘要:根据FCM(fuzzy C-means,模糊C均值)算法初步建立了一种适用于我国多普勒天气雷达反射率资料的质量控制方案,对2009年6月3—5日蚌埠、阜阳雷达站部分雷达体扫资料进行统计分析。结果表明,降水和非降水回波水平反射率结构(T)和垂直反射率差(V)均有不同的参数分布特征,并可有效区分。在此基础上以这两个参数作为FCM算法的输入特征向量,自动识别出降水回波和地物杂波。质量控制结果表明,恰当选取降水回波和地物回波的特征参数,作为FCM算法中的输入特征向量,能够有效识别这两类回波,从而剔除非降水回波,以提高质量控制的效果。
2012, 35(2): 221-228.
摘要:根据青藏高原大气热源季内振荡分析的实际需要,设计了适于提取准双周(10~20d)、准一月(20~40d)振荡的Lanczos滤波器(L.f.)。通过与Butterworth滤波器(B.f.)滤波效果的定量分析,确定了准双周、准一月L.f.窗宽参数l的临界值l0分别为24、46;当l≥l0时,L.f.滤波器性能全面优于B.f.。选用拉萨附近格点(90°E,30°N)的1950—2006年整层大气热源资料做了应用试验,结果表明,由l=121的L.f.得到的拉萨夏季准双周、准一月振荡分量质量可靠,可用于青藏高原大气热源季内振荡强度的年际差异和季内过程分析。
2012, 35(2): 229-239.
摘要:2009年秋季至2010年初夏,云南遭受了有资料记录以来最严重的干旱,其中2009年秋季是有资料记录以来降水偏少最明显的年份,全省平均降水比历年同期偏少50%以上。通过诊断方法分析了云南秋季降水和大气环流异常的特征,结果表明在多年平均情况下,云南秋季大部分地区的降水占年降水总量的20%以上,对年降水量的变化有重要影响;2009年秋季云南区域大气低层的水汽持续偏少、高层辐合低层辐散的高低层流场配置是这次干旱产生的最直接原因;另外,持续偏西偏强的西太平洋副热带高压、弱冷空气和弱暖湿气流活动,以及北方冷空气与南方暖湿气流影响云南的不同步、夏季风环流的提前结束等都对这次干旱过程产生了重要的影响。
2012, 35(2): 240-248.
摘要:利用1948-2009年NCEP/NCAR再分析资料,研究了黄河流域年平均、1、4、7、10月整层水汽含量的时空分布特征。结果表明:年平均水汽含量为5~27mm,时间上,冬季(1月)和夏季(7月)分别为最低和最高,空间上,青藏高原和黄河下游上空分别为最低和最高,西风带水汽大小居于两者之间;利用旋转经验正交函数(rotated empirical orthogonal function,REOF)展开方法,将黄河流域年平均水汽含量划分为2个区,1、4、7、10月均划分为4个区;年平均及各月全流域和黄河中下游区水汽含量均趋于减少,其余各分区演变趋势各异。
2012, 35(2): 249-256.
摘要:研究巢湖流域流场特征对于认识该地区热量、水汽交换和水流运动规律具有重要意义。利用2006年合肥、肥东、巢湖、庐江站以及姥山岛自动气象站的风场资料,分析了巢湖流域典型站点的风速和风向变化特征。结果表明,陆面站点年平均风速为2.17m/s,湖面站点风速为2.41m/s。所有站点春夏季风速大于秋冬季,陆上风速具有明显的日变化,白天风速大于夜间,而湖面风速日变化较不显著。陆面站点风向季节变化明显,春夏季以偏南风为主,秋冬季以偏北风为主,春夏季的风向日变化特征较秋冬季明显,湖面站风向没有明显的季节变化。陆面站点不同程度地受到湖陆风的影响,距离湖面较近的站点受到的影响较大。湖面和陆面站点风向差距平与气温差距平的日变化保持一致,表明湖陆温差是影响巢湖流域湖陆风的关键因子。
地址:江苏南京宁六路219号南京信息工程大学 邮编:210044
联系电话:025-58731158 E-mail:xbbjb@nuist.edu.cn QQ交流群号:344646895
大气科学学报 ® 2025 版权所有 技术支持:北京勤云科技发展有限公司